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On a Method of Carasso and Laurent for 
Constructing Interpolating Spli nes 

By M. J. Munteanu and L. L. Schumaker* 

Abstract. Carasso and Laurent studied a method for computing natural polynomial 
splines interpolating simple data. We discuss several similar methods which can be applied 
to numerical construction of more general interpolating splines, including Lg-splines 
interpolating Extended-Hermite-Birkhoff data. 

1. Introduction. Let x0 < xl < ... < xN+. A natural polynomial spline of 
degree 2m - 1 with knots at the { xi IN+ 1 and interpolating data {yi yN+ 1 at the knots 
is a function s with the properties 

(1.1) s is a polynomial of degree 2m - 1 in (xi, x,?), i = 0, 1, , N; 

(1.2) (interpolation) s(x-) = yi, i = 0, 1, *.., N + 1; 

(1.3) (smoothness) sti)(Xi+) =si)(xi-), 

j= 0, 1, ,2m -2; i = 1, 2, , N; 

and 

S(M (x+ (2m-2)(0+ 0 

(1.4) (end conditions) s (xo+) = = s 2-(x0+) = 0 
s m)(X -N?) = . 2m= 2) (XN+1 ) 0. 

There are a wide variety of computational schemes for numerical construction 
of such splines (see e.g. [1], [3], [5], [6], [9], [10], [11], [12], [15] and the references 
therein). Carasso and Laurent [3] proposed a certain factorization method which 
proceeds roughly as follows. Let 3(x) = [s(x), .., s (2m- 1)(x)]T and Ri = N(xi +), 

Li = N(xi -). Clearly, (1.2) and (1.4) provide m relations on the components of Ro. 
But, in view of (1.1), it is easy to obtain (using the Taylor expansion) m relations on 
the components of L1 from those on Ro. Furthermore, the smoothness property 
(1.3) at xl and the interpolation condition permit the derivation of m relations on 
R1 from those on L1. Continuing this process, m relations can be found on all of the 
vectors {Li LN+ 1 and { Ri IN. Similarly, starting with LN+j and proceeding backwards, 
a separate set of m relations on each of these vectors can be derived. Finally, for each 
i, the sets of relations can be combined to obtain 2m equations for the 2m components 
of the Li and Ri, which, of course, determines the spline in each interval. 

The purpose of this paper is to discuss such factorization schemes in a general 
framework and to derive several explicit methods which can be utilized for the numer- 
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ical construction of considerably more general interpolating splines, including, for 
example, Lg-splines interpolating Extended-Hermite-Birkhoff data. 

2. Preliminaries. The basic structural properties underlying the factorization 
method outlined in Section 1 for polynomial splines are shared by a wide class of 
generalizations (e.g. g-splines, L-splines, and Lg-splines; see Section 4). It is convenient 
to abstract these properties. 

Let x0 < xi < ... < XN1, and let {U,}m-l be 2m functions such that the Wron- 
skian W(uo, , U2mi)(X)> 0 for x C [xO, XN?1]. We consider construction of a spline 
function s(x) with the following properties (as before, we use the notation 3(x) = 

[s(x), .. . - 
, 

(2m- 1) (x)]T and Li = N(xi-), Ri = N(xi +)): 
(2.1) (piecewise property). s is a linear combination of {u i }2m- in each interval 

(xi, x?+1), i = 0, 1, ,N. 

(2.2) (interpolating conditions). For each i = 1, 2, , N, there exist 1 < zi _ m, a 
z,-vector yi, and a zi X 2m (rank zi) matrix Ai such that Ai3(xi) = yi. 

(2.3) (smoothness conditions). For each i = 1, 2, . , N, there exists a (2m - zi) 
X 2m matrix Si of rank 2m - zi such that SiLi = SiRi. 

(2.4) (end conditions). There exist m X 2m rank m matrices RFO and LBN+1 and 
in-vectors ro and IN+ 1 such that RFORO = ro, LBN+ LN+l = 

We need the following elementary fact. 
LEMMA 2.1. Given a real number y, suppose s(x) is a linear combination of , ui(x)} ml 

in some interval [a, fi] containing y. Then, there exists a set offunctions {ui(y; x)}2m-1 

in U = span {U,(X)}2m-l such that, for every x C [a, p3], 
2m-1 

(2.5) s(x) = E s"i)(y)ui(y; X). 
j=O 

Proof. By the Wronskian assumption on the functions of U, the linear functionals 
0 

} 0m-1 given by Xif = f ((y) are linearly independent in the dual U*. Theorem 
2.5.1 of Davis [4] applies. 

The functions ui(y; x) in the above lemma depend only on U and y, and not on 
afi. The following immediate consequence of the lemma shows that, in each interval 
(xi, xi+,), a spline s is determined by either R, or Li+,. 

COROLLARY 2.2. For k = 0, 1, , N + 1, let {Ui(xk; X)}m 1 be the set offunctions 
corresponding to y = Xk in Lemma 2.1. Suppose s satisfies (2.1). Then 

(2.6) 3(x) = W(UO(xi; .), . . . , U2mil(Xi; .))(x)Ri, 

(2.7) s(x) = W(UO(Xi+1; *), * * * U2m-1(Xi+1; .))(x)Li+1 

for x C (xi, xi+1), i = 0, 1, . . , N. 
COROLLARY 2.3. Let s satisfy (2.1). Then, there exist 2m X 2m nonsingular matrices 

TFi and TB, such that 

(2.8) Li+1 = TFiRi, 

(2.9) Ri = TBtLi+?. 

Proof. For example, from Corollary 2.2, we see that 

TFi = W(u0(xs;.), * *, u2mi1(xi; ))(xi+1). 
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As we remarked above, to construct a spline s satisfying (2.1)-(2.4) it suffices to 
find either Li or Ri for each i = 0, 1, . , N + 1. To this end, we now seek to find 
2m conditions on the components of each of the Li and Ri. 

First, starting with the end condition RFoRo = r0, we show how to find m con- 
ditions on each of the Li and Ri. If we substitute R- = TBoL, in RFoRo = r0, we get 
LF1Lj - 11 with LF1 = RFoTBo and 11 = r0 (since RF& is m X 2m so is LF1, and these 
are the desired m relations on L1). To find conditions on R1, consider 

(2.10) [LF r8j]L:: [0L 

with i = 1. The matrix 

rLFil 
[ixi 

is 3m -zi by 2m. Suppose the rows of LFi are rearranged so that the last ej rows 
coupled with the 2m - zi rows of Si are linearly independent. Since Si is of rank 
2m - zi, 0 _ ei < zi. Now, using the 2m - z, rows of the matrix Si and the last e, 
rows from LFj, we can eliminate the first 2m variables from the first m - zi of the 
equations. This leaves m - zi equations on the components of Ri. Adding the z, 
equations AiRi = -yi, we have m equations on Ri which can be written RFjRj = ri. 
These steps can be repeated to go from m conditions on R1 to m conditions on L2, 
then to R2, and so on. We conclude there exist m X 2m matrices LFI, RFj and m- 
vectors 1j, ri such that 

(2.11) LFiLi = li, i = 1, 2, , N + 1, 

(2.12) RFiR. = ri, i = 0, 1, , N. 

In general, LFI = RF-1 TB -1 and 1i = ri 1, i = 1, 2, . , N + 1. 
Conditions (2.11) and (2.12) were constructed by starting with the left end con- 

dition and proceeding forward (the F in RF is to remind us of that). A similar pro- 
cedure starting with LBN+1LN+1 = IN1 and proceeding backwards produces m X 2m 
matrices LBi, RB. and m-vectors lP, r' such that 

(2.13) LBiL, = l', i = 1, 2, , N + 1, 

(2.14) RBiRi = r', i = 0, 1, ..., N. 

Here, RB, = LB? + 1 TF, and r' = +l . The matrix LB. is found from RB, by eliminating 
the last 2m variables from the first m -zi rows of 

(2.15) [? -S.LR] = j 

and adding the relations AiLi = yi. We assume for the remainder of the paper that 
if SiLi = SiRi, then AiRi = yi, if and only if AiLi = yi. The following lemma will 
be needed later. 

LEMMA 2.4. Suppose Ri is a vector satisfying (2.12) and (2.14). Then there exists 
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a vector Lli satisfying (2.11) and (2.13). Conversely, given L-t satisfying (2.11), (2.13) 
there exists RI satisfying (2.12), (2.14). 

Proof. Let Rli satisfy (2.12) and (2.14) .We show how to construct L,!. Let LFi be 
a zi X 2m matrix formed by augmenting the last ei rows of LFi (cf. the discussion 
following (2.10)) in such a way that the matrix in (2.16) below is nonsingular. Let 
L'! be the solution of 

(2.16) = 

St SiR*.! 

where hi consists of the last et rows of 4i. 
By the construction of (2.12), RFR*. = ri implies AiRk =-yi. Since S.R*. =S.L*, 

it follows that AjL* = Ti. Now we claim LFXLi = 1i and LBjL~k = P. Indeed, suppose 
LFjL* # 4i. Then 

LFi ? L2] ii + ai 

for some 6i. By the construction of Llk, the last et 6&'s are zero. Suppose at least one 
of the first m - et is not. Now, performing the same elimination used on (2.10) 
leads to a contradiction of RFjR4! = ri. To check that LBiL*. = Pl, note that (2.15) 
holds for Lli and R4!. Eliminating the last 2m variables in the first m - zi equations 
and using ALlk = my yields LBiL*. = 1'. 

The converse assertion is proved analogously. 

3. Constructive Methods. In this section, we discuss three methods for con- 
structing a spline s satisfying (2.1)-(2.4). The methods are based on computing Li 
and/or Ri for each i = 0, 1, , N + 1 from the information on s inherent in the 
relations (2.11)-(2.14). 

Method 1. For i= 1, 2, ,N + 1, solve 

(3.1) [ Li = [4]. 
LBi I'_ 

Method 2. For i = 1, 2, . *, N, solve 

LFi 0 

0 RBi rLi r 
(3.2) 

Ai I ? ? -Ri_ 'i 

Si - Si- 0 - 
Method 3. Solve 

(3.3) L1FN+l1 L = rlN+1 

LLBN+l N+1 
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For i = N, N-1, *,1, find 

(3.4) Ri= TBiLi+j 

and solve 

(3.5) [Si Li=!i l 
_SiRi- 

where LFi and 1i are as in the proof of Lemma 2.4 (see (2.16)). 
THEOREM 3.1. Suppose there is a unique spline function s satisfying (2.1)-(2.4). 

Then Methods 1-3 are well defined; i.e., the systems in (3.1)-(3.3) and (3.5) are non- 

singular. 

Proof. We consider first Method 1. Suppose (3.1) is singular for some k, 1 < k < 

N ? 1. Then, there exists L* 5 0 with 

L k L* 0. 

-LBki 

For x E (Xk-1, Xk) define 
2m-1 

S*(x) = E L k(j)Ui(Xk; X)X 
j =O 

Clearly, R* 1 = - 
*(Xkl+) 

satisfies 
RFk-lRk*_ 

= RBk_ 1R*_ = 0. Now, by Lemma 
2.4, we can find L* 1 satisfying 

L LFk_1L* = 0. 

_LBk 1_ 

This process can be continued to define s*(x) in [x0, Xk]. A similar process starting 
with L* and proceeding forward can be used to define s*(x) throughout [x0, XN+1] 

with the property that (2.11)-(2.14) all hold with zero right-hand sides. Since 

[LFi]L* = 0 

-LBi_ 

implies Ai = 0, we conclude that s* is a nontrivial spline satisfying (2.1)-(2.4) with 
homogeneous data. This contradicts the uniqueness assumption. 

For Method 2, suppose (3.2) is singular. Then, for some k, 1 < k ? N, there 
exist nontrivial L* and R* with 

LFk 0 

0 RB, L*7 (3.6) ! O 0k LR 

(3.6) 0 . 
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Moreover, performing elimination on (3.6), we conclude that RFkR* = LBkL* = 0. 
Now, s*(x) can be defined in [Xk-l, Xk] and [Xk, Xk+1] in terms of L* and R*, respec- 
tively. Lemma 2.4 can be used to extend s* to [x0, XN+l] such that (2.11)-(2.14) hold 
with 0 right-hand sides. This is again a contradiction of the uniqueness of spline in- 
terpolation, as s* 3 0. 

Finally, for Method 3, we note that the system (3.3) cannot be singular (by the 
same proof as for Method 1). The matrix (3.5) is nonsingular by construction (cf. 
the proof of Lemma 2.4). 

The matrix in (3.5) was obtained from LF, and Si by an augmentation process. 
In view of the uniqueness of the interpolating spline, we see that the solution of (3.5) 
must be unique, and so any augmentation must give the same solution. But this 
means that there is no freedom to choose different augmentations and we conclude 
that ei = zi in the proofs of Corollary 2.3 and Lemma 2.4. Thus no augmentation 
is ever necessary in practice. 

4. Applications. We recall the definition of Lg-splines [8]. Let L be an mth order 
differential operator, A = { Xi }I a set of linearly independent linear functionals on 
HM , and { dci } a set of real numbers. An Lg-spline interpolating { dci } with respect 
to A is a solution of 

(4.1) j ILsj12 = min jLfl 12, 

U(d) = f E Hn: Xjf = di, j = 1, 2, *,n} 

The methods of Section 3 can be used to construct such splines when A corresponds 
to EHB data. 

To describe EHB interpolation, let xO < xl < ... < XN+j and let 1 < zi < m with 

AN._zi = n. ForO ? i < N+ 1,1 < j zi,leta(i,j) = (ao(ij) , am-1(iJ)) 
be vectors such that for each i the vectors in the set { a(i, j)} IL are linearly independent. 
A generates an EHB interpolation problem if the n linear functionals in A are 

m-1 

(4.2) a ak(i, j) Di, i = 1, 2, * * , zi; i = 0, 1, * * * , N + 1, 
k=O 

where D i;f = f ()(xi). 

We now show that an Lg-spline s interpolating EHB data satisfies the conditions 
(2.1)-(2.4). At each xi, there are zi interpolating conditions which can be written in 
the form of (2.2) with 

ra(i, 1) 

Ai = 0 1, 2, *,N. 

Lae(i, zi)_ 

Furthermore (see [8, Theorem 3.6]), s belongs to C`m' and at each xi, 1 < i _ N, 
there are additional m - zi smoothness conditions. These are given by R'i s(xi +) 
RXi)s(xi-), j = zi + 1, *.. , m, where Rxiis(x) = E2,n- f3k(i, j)s(k)(x), with certain 
(real) coefficients fBk(i, j). Thus, the smoothing matrices of (2.3) are 
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(4.3) S. = r iji. Ziz +I) 

_ U(, m)_ 

Finally, the end conditions on s are given by (2.4) with 

4(O, 1) _d, 

* ~~0 

R Fo = a(O, zo) __, ro =dZ 

3(0, zO + 1) 0 

0 

(3(0, m) 0 

and 

F a(N + 1, 1) 

0 d.-ZN+il + 

a(N + 1, zN+l) 

LFN+1 
= 

,I 
N-+1 = 

Kn i 
0 3(N + 1, ZN+l + 1) 

f (N+ 1, m) 

For the smoothness matrices of (4.3), the condition SLi = SiR, clearly implies 
the first m components of Li and Ri are the same. Thus, the hypothesis needed for 
Lemma 2.4 that ALi = yi iff ARi = i holds for these splines. 

The matrices At, Si, RFo, and LFNl are considerably simplified for less general 
forms of data. For example, for HB data (see [8]) each of the vectors a(i, j) and 

l(i, k) has only one nonzero coefficient. For Hermite data, 

A, = [I-i 10], S. = 

_ Im,-zi- 

and 

RF0 L I i LFN+- K i 

When L = D', the Lg-splines are just polynomial splines. In this case, ui(x) x, 
0 = 0, *., 2m - 1, and the functions of Corollary 2.2 are ui(xi; x) = (x -x)i 

* = , . . 1 1. 
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5. Remarks. 1. If Method 1 is applied to the computation of a natural poly- 
nomial spline interpolating simple data (z0 = z, = ... = z,,, = 1), we have the 
method introduced by Carasso and Laurent [3]. Method 2 was introduced for type 
I L-splines by Munteanu [12]. 

2. There are a variety of methods using bases for computing polynomial inter- 
polating splines with Hermite data (cf. the discussions in [1], [3], [5], [6], [8], [9], 
[11], [15]). These fall into two classes: methods where bases for the space of splines S 
are used and those where bases for the space LS are used (called projection methods). 
For polynomial splines with Hermite data, convenient local-support bases have been 
found ([5], [7], [11]). Similar bases have been found for g-splines with Hermite-Birkhoff 
data [9], but to date not for EHB data or for more general operators L. The projective 
methods [1], [3], [6] can be used for L-splines with Hermite data [12]. (Projective 
methods have the drawback that bases (even local support bases) for LS lead to 
nonlocal bases for 8, with attendant conditioning problems.) 

3. Methods for computing Lg-splines have a variety of practical applications; 
e.g. in constructing optimal quadrature rules (see e.g. Karlin [10, p. 83] and references 
therein) and solving two-point-boundary-value problems [2], [6]. An optimal method 
for boundary value problems of Golomb [6] requires the construction of Lg-spline 
corresponding to EHB data. 

4. There are some obvious dual versions of Methods 1 and 3. Method 1' would 
involve solving 

RBi ri 
A Method 3' can be constructed by starting with x0; we compute R0 and proceed 
forward. It should be cautioned that the natural dual to Method 2 (that is, the use 
of RFi and LBi to determine Li and Ri) would not be well defined. The reason is that 
both sets of m relations are obtained by adding the interpolating conditions to other 
sets of m - zi relations. 

5. The methods of Section 3 apply equally well to type III L-splines [14]. The 
periodic case (type IV) is not covered. It may be possible to develop factorization 
methods for the case of splines satisfying inequalities (see [8]) rather than interpolating 
data exactly, and for smoothing splines (see [11]). 

The methods of Section 3 apply equally well to type III L-splines [14]. The periodic 
case (type IV) is not covered. It may be possible to develop factorization methods for 
the case of splines satisfying inequalities (see [8]) rather than interpolating data 
exactly, and for smoothing splines (see [11]). 

6. The methods of Section 3 can be compared with each other and with other 
methods in the literature for efficiency. Without examining operation counts, it is 
clear that Method 3 requires only half the effort to set up that the other two do as 
the { Lfi }N and { RB }I' are not needed. The actual operation counts for finding 
ILFi}l"' depend on the complexity of the interpolation and smoothing conditions. 
For polynomial splines, the total operation count for any of the algorithms is of the 
order con Nm3, where con does not depend on N or m (but does depend on the algo- 
rithm). The storage required for the factorization method is of order Nm2. Local 
support basis methods use on the order of Nm storage if the band structure is ac- 
counted for, and N2 otherwise. 
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7. Method 3 has been tested for a wide variety of simple, Hermite, and Hermite- 
Birkhoff interpolation problems for polynomial splines. For complete FORTRAN 
subroutines and a discussion of the numerical experience with them, see [Eidson, 
H. L. and Schumaker, L. L., Computation of g-Splines via a Factorization Method, 
CNA Report 60, Center for Numerical Analysis, The University of Texas, Austin, 
1972]. 
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